機電系統原理與實驗一(ME5126)

Basic Circuit Analysis

W. Bolton, "Mechatronics --- Electronic control systems in mechanical and electrical engineering," 5th edition, Pearson Education Limited 2012

J. Edward Carryer, R. Matthew Ohline, Thomas W. Kenny, "Introduction to Mechatronic Design," Prentice Hall 2011, Chap 9

線上學習網站:https://www.electronics-tutorials.ws PowerPoint 中部分圖片擷取和修改自教科書和網路圖片

機電系統原理與實驗一 ME5126 林沛群

林沛群 國立台灣大學

國立台灣大學 機械工程學系

Terminology -1

- Charge (Q): quantity of charged particles
 - Unit: Coulomb (C), $1C = 6.24 \times 10^{18}$ charged particles
- □ Current (*I*): number of charged particles that move past any point in an increment of time --- $\frac{dQ}{dt}$
 - Unit: Ampere $(A = \frac{c}{s})$
- □ **Voltage** (*V*): strength of the electric field --- $\frac{dW}{dQ}$, work done per unit charge
 - Unit: volt ($V = \frac{I}{c}$, work done in moving a coulomb of charge)

Terminology -2

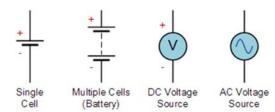
□ Power (P): rate at which work is being done

$$P = \frac{work}{time} = \frac{joules(J)}{second(s)} = \frac{joules}{coulomb} \times \frac{coulomb}{second} = \frac{J}{C} \times \frac{C}{s} = VI$$

- Unit: watt $(W = \frac{J}{s})$
- $1W = 1\frac{J}{s} = 1\frac{Nm}{s} = 1\frac{(kg\frac{m}{s^2})m}{s} = 1\frac{kgm^2}{s^3}$ (ML²T⁻³)

represented in seven SI base units

機電系統原理與實驗— ME5126 林沛群


Seven SI Base Units

Name	Symbol	Measure	Dimension Symbol
Meter	m	Length	L
Kilogram	kg	Mass	M
Second	S	Time	Т
Ampere	Α	Electric current	1
Kelvin	K	Thermodynamic temperature	Θ
Mole	mol	Amount of substance	N
Candela	cd	Luminous intensity	J

Terminology -3

- Voltage source: an ideal source would deliver a constant voltage independent of current drawn from the source
 - Direct current (DC)
 - Alternating current (AC)

 Current source: an ideal current source would generate whatever voltage was necessary to produce a constant flow of current

5

機電系統原理與實驗一 ME5126 林沛群

Terminology -4

- Circuits
 - A complete circuit

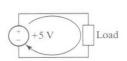
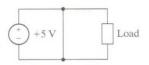
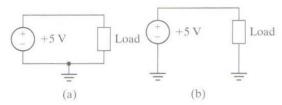
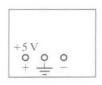


FIGURE 9.2
The simplest complete circuit.

- An open circuit
- A short circuit

FIGURE 9.3 In an open circuit, no current flows.

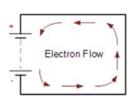

FIGURE 9.4
A short circuit across the voltage source and the load.

Terminology -5

- Shorting: the process of creating a short circuit
 a transient effect, causing high current to flow
- Ground: a common reference point through a circuit and represents the point that will be assigned a value of 0V

□ Floating: no direct connection to the building ground

機電系統原理與實驗一 ME5126 林沛群



Electrical Current

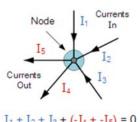
- Conventional current flow
 - The flow of positive charge around a circuit, being positive to negative

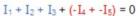
- Electron flow
 - The actual current flowing in an electrical circuit is composed of electrons that flow from the to positive

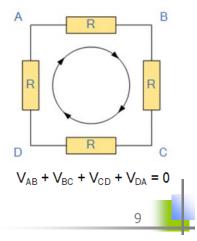
Kirchhoff's Law

Kirchhoff's Current (First) Law

- The sum of all the current entering a node of a circuit is the same as the sum of all the current leaving that same node
- Conservation principle

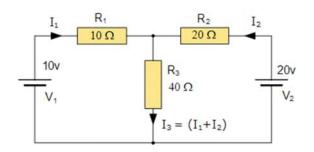

$$\sum_{k=1}^{n} i_k = 0$$


Kirchhoff's Voltage (Second) Law


• The sum of the voltage differences around any closed loop in a circuit is zero

$$\sum_{k=1}^{n} V_k = 0$$

機電系統原理與實驗一 ME5126 林沛群



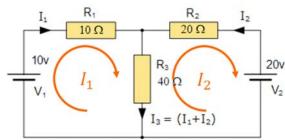
An Example -1

Ex: A circuit

Method 1: Kirchhoff's Laws

$$10 - 10i_1 - 40i_3 = 0$$
$$20 - 20i_2 - 40i_3 = 0$$
$$i_3 = i_1 + i_2$$

$$i_1 = \underline{-0.143} \quad i_2 = 0.429 \quad i_3 = 0.286$$
20V battery is charging the 10V battery


An Example -2

□ Ex: A circuit

Method 2: Mesh current analysis (or loop analysis or Maxwell's

circulating currents)

 Label inside loops in a clockwise direction with circulating currents as the aim to cover all the elements of the circuit at least once

$$I_1 = i_1, I_2 = -i_2$$

$$10 = (10 + 40)I_1 - 40I_2$$

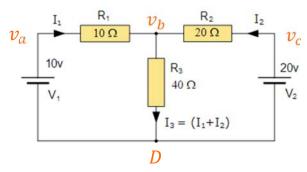
$$-20 = -40I_1 + (20 + 40)I_2$$

$$V = RI$$

$$-20 = -40I_1 + (20 + 40)I_2 \qquad \qquad \Box \qquad I = R^{-1}V = \begin{bmatrix} -0.143 \\ -0.429 \end{bmatrix}$$

機電系統原理與實驗一 ME5126 林沛群

11


An Example -3

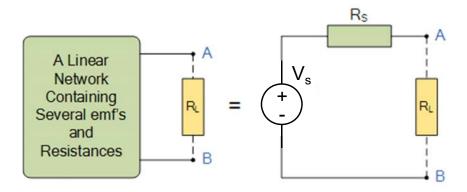
■ Ex: A circuit

Method 3: Nodal voltage analysis

$$i_1 + i_2 = i_3$$

$$\frac{v_a - v_b}{10} + \frac{v_c - v_b}{20} = \frac{v_b}{40}$$

$$v_a = 10$$
, $v_c = 20$

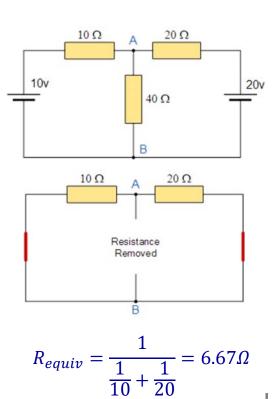

$$v_b = \frac{80}{7}V$$
 $i_3 = \frac{2}{7} = 0.286A$

Thevenin's Theorem

Thevenin's Theorem

 Any linear circuit containing several voltages and resistors can be replaced by just one single voltage in series with a single resistance connected across the load

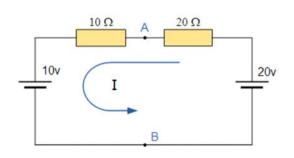
機電系統原理與實驗一 ME5126 林沛群


13

Revisit the Example -1

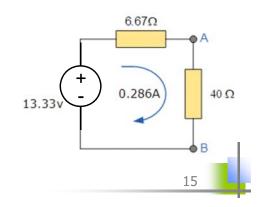
Ex: The circuit

- Step 1: Remove the load resistor
- Step 2: Find the equivalent resistor by shorting all voltage sources and opening circuiting all current sources



Revisit the Example -2

 Step 3: Find the equivalent voltage source by the usual circuit analysis

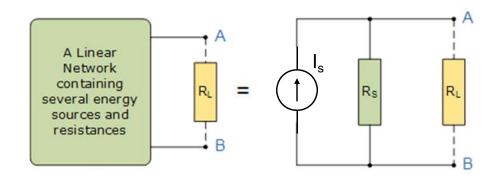

$$I = \frac{V}{R} = \frac{20 - 10}{20 + 10} = 0.33A$$

$$V_{AB} = 20 - (20 * 0.33) = 13.33V$$

= 10 + (10 * 0.33) = 13.33V

 Step 4: Find the current flowing through the load resistor

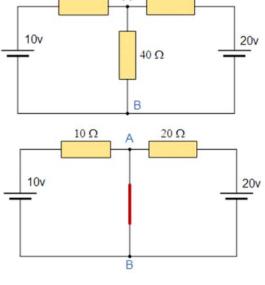
$$I = \frac{V}{R} = \frac{13.33}{6.67 + 40} = 0.286A$$


機電系統原理與實驗一 ME5126 林沛群

Norton's Theorem

Norton's Theorem

 Any linear circuit containing several energy sources and resistances can be replaced by a single constant current generator in parallel with a single resistor



Revisit the Example -3

Ex: The circuit

Step 1: Remove the load resistor

 Step 2: Find the equivalent current source by placing a short link on the original load terminals

20 Ω

10 Ω

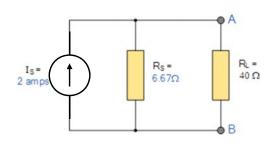
$$I_{equiv} = \frac{10}{10} + \frac{20}{20} = 2A$$

17

機電系統原理與實驗一 ME5126 林沛群

Revisit the Example -4

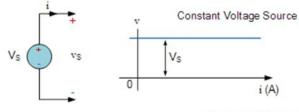
Ex: Revisit the same circuit

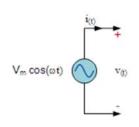

 Step 3: Find the equivalent resistor by shorting all voltage sources and opening circuiting all current sources

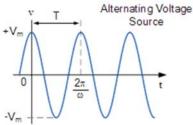
$$R_{equiv} = \frac{1}{\frac{1}{10} + \frac{1}{20}} = 6.67 \Omega$$

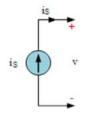
 Step 4: Find the current flowing through the load resistor

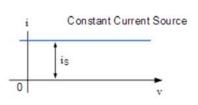
$$I = \frac{6.67}{6.67 + 40} * 2 = 0.286A$$

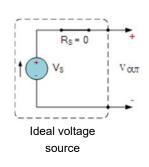


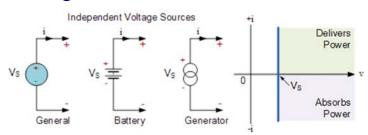


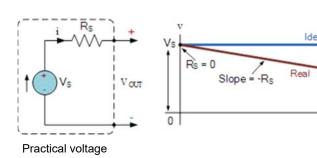

Electrical Sources


Electrical Sources


- DC voltage source
- AC voltage source
- Current source

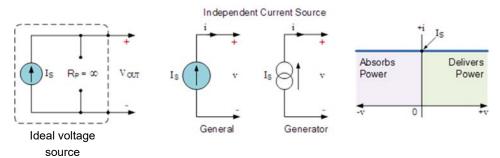

機電系統原理與實驗一 ME5126 林沛群

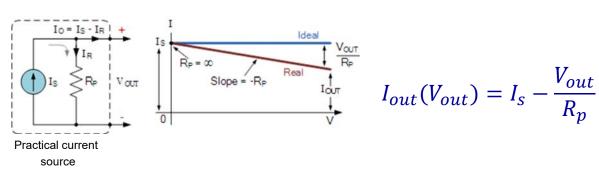

19



Voltage Sources

Ideal and practical voltage source


$$V_{out}(I) = V_{\scriptscriptstyle S} - IR_{\scriptscriptstyle S}$$


source

Current Sources

Ideal and practical current source

機電系統原理與實驗一 ME5126 林沛群

2:

The End

Questions?

