

Sensors and Transducers

Textbook: W. Bolton, "Mechatronics --- Electronic control systems in mechanical and electrical engineering," 5th edition, Pearson Education Limited 2012, Chap 2 Ref. book: R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza, "Introduction to Autonomous Mobile Robots," 2nd edition, MIT Press, 2011, Chap 4 PowerPoint 中部分圖片擷取和修改自教科書和網路圖片 **林沛群** 國立台灣大學 機械工程學系

機電系統原理與實驗一 ME5126 林沛群

- Transducer
 - A transducer is a device that converts energy from one form to another
- Sensor
 - A sensor is a transducer that receives and responds to a signal or stimulus from a physical system
- Actuator
 - An actuator is a device (transducer) that is responsible for moving or controlling a mechanism or system

Definitions -2

Bidirectional transducers

- Bidirectional transducers convert physical phenomena to electrical signals and also convert electrical signals into physical phenomena
- Examples
 - Antenna: electromagnetic waves ↔
 electrical signals (a radio receiver vs. a radio transmitter)
 - Voice coils: sound waves ↔ electrical
 signals (a microphone vs. a loudspeaker)
 - Piezo transducer: force/displacement ↔
 electrical signals

機電系統原理與實驗一 ME5126 林沛群

- Performance Terminology -1
- Range and span
 - The limits between which the input can vary
 - ◆ Ex: LM35 temperature sensor, range 55 to 150 °C
- Error
 - The difference between the result of the measurement and the true value
 - Ex: Sensor reading 24.6 °C and actual temp 25 °C, error = -0.4 °C
- □ Accuracy
 - The extent to which the value indicated by a measurement system might be wrong

◆ Ex: ±0.5 °C 機電系統原理與實驗一 ME5126 林沛群

Performance Terminology -2

- Sensitivity
 - The relationship indicating how much output there is per unit input
 - Ex: 10 mv/°C
- Hysteresis
 - The dependence of the state of a system on its history

Electric displacement field D of a ferroelectric material as the electric field E is first decreased, then increased. The curves form a hysteresis loop.

機電系統原理與實驗一 ME5126 林沛群

Performance Terminology -4

- Repeatability / reproducibility
 - The ability to give the same output for repeated applications of the same input value
 - = $\frac{max.-min. values given}{full range} \times 100\%$

Stability

- The ability to give the same output when used to measure a constant input over a period of time
- Drift: Describing the change in output that occurs over time; expressed as a percentage of the full range output

機電系統原理與實驗一 ME5126 林沛群

Performance Terminology -5

- Resolution
 - The smallest change in the input that will produce an observable change in the output
 - Digital sensors: Usually the A/D resolution, e.g. $\frac{5V}{2^8-1}$ (8 bit)
- Dynamic range
 - Ratio of the maximum input to the minimum measurable input value, usually in decibels (dB, "power")
 - e.g. Power measurement from 1 Milliwatt to 20 Watt, = $10 \log \left(\frac{20}{0.001}\right) = 43 \, dB$
 - e.g. Voltage measurement from 1 Millivolt to 20 Volt, =

$$10\log\left(\frac{20}{0.001}\right)^2 = 20\log(\frac{20}{0.001}) = 86 \, dB$$

Performance Terminology -6

- Dead band
 - The range of input values for which there is no output
- Bandwidth
 - The speed with which a sensor can provide a stream of readings
- Output impedance
 - Ex: 0.1 Ω for 1 mA load
- Others
 - EX: supply voltage, current drain...

機電系統原理與實驗一 ME5126 林沛群

- Static characteristics
 - The values given when the steady-state conditions occur
- Dynamic characteristics
 - The behavior between the time that the input changes and the time that the value given by the transducer settles down to the steadystate value
 - Response time
 - To the step input
 - Time constant
 - $1 \frac{1}{e} = 63.2$

Static and Dynamic Characteristics -2

- Rise time
 - The time taken for the output to rise from 10% to 90% of the steadystate value
- Settling time
 - The time taken for the output to settle within some percentage, e.g.
 - 2% of the steady-state value

機電系統原理與實驗一 ME5126 林沛群

- Method 1
 - Proprioceptive sensors
 - Measuring values internally to the system

Ex: Motor speed, wheel load, robot arm joint angle, battery voltage

- Exteroceptive sensors
 - Acquiring information from the system's environment

Ex: Distances measurement, light intensity, sound amplitude

Method 2

- Passive sensors
 - Measuring ambient environmental energy entering the sensor
 Ex: temperature probe, microphone, CCD, CMOS
- Active sensors
 - Emitting energy into the environment, then measuring the environmental reaction
 - Often achieving superior performance because of more controlled interactions with the environment
 - May suffer from interference between the signals emitted by other sensors

機電系統原理與實驗一 ME5126 林沛群

General classification	Sensor	PC or	A or P
(typical use)	Sensor System	EC	
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC PC PC	P P A A A A A
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

機電系統原理與實驗一 ME5126 林沛群

- Strain gauge
 - A device used to measure strain on an object
 - $\frac{\Delta R}{R} = G\varepsilon$, G = gauge factor
 - $G = \sim 2$, metal wire ; $G = \sim 100$, semiconductor

Base Lengt

Grid Width 15

As displacement sensors
 Strain gauges
 Strain gauges
 Strain gauges
 Strain gauges

Elements -3

Elements -5

The Hall effect: the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and to an applied magnetic field Hall perpendicular to the current

Body State: Position / Orientation -1

- Description Potentiometer
 - Consisting of a resistive element with a sliding contact which can be moved over the length of the element, measuring linear or angular displacement
 - Pro: The most straight forward form of displacement sensing
 - Con: Difficulties with resolution, linearity, and noise susceptibility

Total resistance: $R_p(1-x) + R_L x R_p / (R_L + x R_p)$

Voltage: $\frac{V_L}{V_S} = \frac{R_L x R_p / (R_L + x R_p)}{R_p (1-x) + R_L x R_p / (R_L + x R_p)}$

If the load is of infinite resistance, $R_L \rightarrow \infty$ $\Box > V_L = xV_s$

If the load is of finite resistance \Box error $= xV_s - V_L = V_s \frac{R_P}{R_s} (x^2 - x^3)$

Body State: Displacement / Orientation -3

- Encoders
 - A device that provides a digital output as a result of a linear or angular displacement
 - Two categories

。 Incremental encoder (Typical resolutions: 2000 counts per revolution

Body State: Position / Orientation -4

- 。 Absolute encoder
 - · Using Grey code, one "change" at a time

	Normal binary	Gray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111

Body State: Position / Orientation -6

- □ Gyroscope
 - Measuring orientation
 - Mechanical gyroscope
 - Concept: A fast spinning rotor will resist any change to its angular momentum relative to inertial frame
 - Reactive torque t (tracking stability) is proportional to the spinning speed, the precession speed and the wheel's inertia

Body State: (Angular) Speed -1

27

機電系統原理與實驗一 ME5126 林沛群

Body State: Acceleration

Accelerometers

Absolute Heading

Compass

- Magnetic field on earth: absolute measure for orientation
- Large variety of solutions to measure the earth magnetic field
 - Mechanical magnetic compass
- Direct measure of the magnetic field
 - 。 Hall-effect, magnetoresistive sensors
- Major drawback
 - Weakness of the earth field
 - 。 Easily disturbed by magnetic objects or other sources
 - Not feasible for indoor environments

Body State: Multi-function

- Inertia measurement unit (IMU)
 - A tri-axis accelerometer
 - Linear acceleration
 - A tri-axis rate gyro
 - Angular velocity
- Combined with other sensors
 - A tri-axis magnetometer
 - Pressure sensor

機電系統原理與實驗一 ME5126 林沛群

Absolute Positioning

- Global Positioning System (GPS)
 - Developed for military use originally; now accessible for commercial applications
 - 33 satellites (including 2 spares) orbiting the earth every 12 hours at a height of 20.180 km
 - Location of any GPS receiver is determined through a time of flight measurement – need 4 satellites - allows to identify three values (x, y, z) for the position and the clock correction

Other systems

- Russia GLONASS
- ◆ China 北斗衛星導航定位系統

Range Sensing -1

Principle

• Time of flight

$$d = c \cdot t$$

Where

- d = distance traveled (usually round-trip)
- c = speed of wave propagation
- \succ t = time of flight.
- Ultrasonic sensor: sound waves, 0.3 m/ms
 - 。 3 m distance, 10 ms
- Laser range sensor: electromagnetic waves, 0.3 m/ns (10⁶ faster)
 - 3 m distance, 10 ns

機電系統原理與實驗一 ME5126 林沛群

Signals of an ultrasonic sensor

Measurement cone

Application: obstacle avoidance

機電系統原理與實驗一 ME5126 林沛群

Range Sensing -4

- Infrared distance sensor (IR)
 - IR LED & position-sensible photo detector (PSD)
 - Directional
 - Ex: Sharp GP2Y0A2YK

Range Sensing -5

- Radio detection and ranging (RADAR)
 - Using radio waves to determine the range, altitude, direction, or speed of objects
 - More robust, not like LIDAR which is not functional in bad environment conditions such as rain, fog, etc.
 - Recent new application: Adaptive cruise control

- Laser range finder (LIDAR)
 - Using laser light to detect range
 - Light + RADAR
 - A mechanical mechanism with a mirror sweeps
 - Can NOT detect transparent materials

- □ 3D laser range finder
 - 16-64 channels
 - 100-300 m range
 - 2-3 cm resolution

機電系統原理與實驗一 ME5126 林沛群

- Load cell
 - Principle
 - External force yields deformation of internal mechanism

- 。 Local deformation is measured by the strain gauge
- Assumptions
 - Local strain is proportional to the external force (depends on compliant mechanism design)
 - Local strain is proportional to output voltage of strain gauge (depends on strain gauge design)

Force Sensing -2

- Design issue
 - Mechanism stiffness vs. sensitivity
 - Hysteresis
 - Multi-channel decoupling
 - Signal conditioning Wheatstone bridge
 - Gauge arrangements (each axis):
 - Economy choice 1 strain gauge
 - Temperature compensation 2 or 4 gauges
 - Maximum sensitivity 4 gauge

42

Vision-based Sensors

Vision sensors: converting light into electrons

- CCD (charge-coupled device)
- CMOS (Complementary Metal Oxide Semiconductor)

Characteristic	CCD	CMOS
Signal from pixel	Electron packet	Voltage
Signal from chip	Analog Voltage	Bits (digital)
Readout noise	low	Lower at equivalent frame rate
Fill factor	High	Moderate or low
Photo-Response	Moderate to high	Moderate to high
Sensitivity	High	Higher
Dynamic Range	High	Moderate to high
Uniformity	High	Slightly Lower
Power consumption	Moderate to high	Low to moderate
Shuttering	Fast, efficient	Fast, efficient
Speed	Moderate to High	Higher
Windowing	Limited	Multiple
Anti-blooming	High to none	High, always
Image Artefact	Smearing, charge transfer inefficiency	FPN, Motion (ERS), PLS
Biasing and Clocking	Multiple, higher voltage	Single, low-voltage
System Complexity	High	Low
Sensor Complexity	Low	High
Palativa DR D sast	Lower	Lower or Higher depending on series

機電系統原理與實驗一 ME5126 林沛群

CCD

RGBD Sensors -1

CMOS

- vision + Depth
 - Microsoft Kinect

Features

Depth sensor type Red, Green & Blue (RGB) camera resolution Infrared (IR) camera resolution Field of view of RGB image Field of view of depth image

Operative measuring range

Skeleton joints defined Maximum skeletal tracking

Kinect v1

Structured light 640×480 , 30 fps 320×240 , 30 fps $62^{\circ} \times 48.6^{\circ}$ $57^{\circ} \times 43^{\circ}$ 0.8 m-4 m (Default); 0.4 m-3.5 m (Near) 20 joints 2 Kinect v2

Time of Flight (ToF) $1920 \times 1080, 30 \text{ fps}$ $512 \times 424, 30 \text{ fps}$ $84.1^{\circ} \times 53.8^{\circ}$ $70^{\circ} \times 60^{\circ}$ 0.5 m-4.5 m 25 joints6

Intel RealSense

45

TECH SPECS

0400	D410	0415	0420	D430
Depth Technology	Depth Technology	Depth Technology	Depth Technology	Depth Technology
Passive IR Stereo	Active IR Stereo	Active IR Stereo	Passive IR Stereo	Active IR Stereo
Image Sensor Technology	Image Sensor Technology	Image Sensor Technology	Image Sensor Technology	Image Sensor Technology
Rolling Shutter	Rolling Shutter	Rolling Shutter	Global Shutter	Global Shutter
Depth FOV (H × V for HD 16:9) 63.4° × 40.4°	Depth FOV (H \times V for HD 16:9) 63.4° \times 40.4°	Depth FOV (H \times V for HD 16:9) 63.4° \times 40.4°	Depth FOV (H × V for HD 16:9) 85.2° × 58°	Depth FOV (H × V for HD 16:9) 85.2° × 58°
RGB Frame Rate and	RGB Frame Rate and	RGB Frame Rate and	RGB Frame Rate and	RGB Frame Rate and
Resolution	Resolution	Resolution	Resolution	Resolution
—	—	1920 × 1080 at 30 fps	—	—
Depth Resolution	Depth Resolution	Depth Resolution	Depth Resolution	Depth Resolution
1280 × 720	1280 × 720	1280 × 720	1280 × 720	1280 × 720
Depth Frame Rate	Depth Frame Rate	Depth Frame Rate	Depth Frame Rate	Depth Frame Rate
Up to 90 fps	Up to 90 fps	Up to 90 fps	Up to 90 fps	Up to 90 fps

機電系統原理與實驗一 ME5126 林沛群

RGBD Sensors -3		
 Asus Xtion Pro Live 	Xtion 2	
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sensor Denth Image Size	Depth & RGB
0.8 m < x < 3.5 m 58° H; 45° V; 70° D RGB, Depth and Microphone VGA (640 × 480) 30 fps; QVGA	Resolution	2592x1944@15fps (5MP) 1920x1080@30fps 1280x720@60fps
(320 × 240) 60 fps SXVGA (1280*1024) Intel x86; AMD Win 32/64 XP, Vista, 7; Linux Ubuntu	Field of View	Depth: 74° H, 52° V, 90° D RGB: 75.6° H, 60° V, 87.9° D (Horizontal, Vertical, Diagonal)
USB2.0 Open NI SDK bundled C++/C# (Windows); C++ (Linux);	Distance of Use	0.8m-3.5m *Short range: Please refer to ASUS Xtion2 > Support> FAQ for setting
Java 18 × 3.5 × 5 cm	Power Consumption	Below 4.5W
* Horizontal, Vertical and Diagonal. 機電系統原理與實驗一 ME5126 林沛群		46

A Famous Competition

DARPA (Defense Advanced Research Projects Agency), Grand Challenge

- 2004
 - 。 240km, all failed before 11.78km
- 2005
 - 。212km
 - 。 3 narrow tunnels
 - >100 sharp turns
 - Beer Bottle Pass

A movie from YouTube A movie from YouTube

Stanley, the winner of the 2005

"sight" 5 laser rangefinders monocular video camera radar "positioning" GPS wheel speed "balance" 6DOF inertia measurement unit GPS compass

機電系統原理與實驗一 ME5126 林沛群

A Famous Competition

- DARPA, Urban Challenge
 - 2007
 - 96 km (60-mile) urban area course
 - Completed in less than 6 hours
 - Obeying all traffic regulations
 - Negotiating with other traffic and obstacles
 - Merging into traffic

A movie from YouTube A movie from YouTube

Boss, the winner of the 2007

"sight"

5 long-range Radar 4 long-range Lidar (->200m) 1 mid-range Lidar 8 short range Lidar

- "pose estimation" GPS with dual anrenna
- 6DOF inertia measurement unit

Google Self-driving Car -1

Starting from 2009

Lead by Sebastian Thrun

機電系統原理與實驗一 ME5126 林沛群

